IPB

Здравствуйте, гость ( Вход | Регистрация )

Активные темы за последние сутки
Новые сообщения с Вашего последнего посещения
Главная страница форума
Все три стрелки часов накладываются друг на друга, Сколько раз в день?
Николай Петрович
сообщение 27.4.2019, 20:16
Сообщение #1


Я такой же, как все: я не похож ни на кого другого.


Группа: Пользователь
Сообщений: 3026
Регистрация: 7.10.2014
Из: Королёв
Пользователь №: 2324



У вас есть аналоговые часы с секундной стрелкой. Сколько раз в день все три стрелки часов накладываются друг на друга?
Источник, в нём дана ссылка на другие решения


Под аналоговыми часами будем понимать часы, у которых секундная стрелка движется плавно. Кроме того, секундная стрелка является центральной, то есть такой, у которой ось вращения геометрически совпадает с осями вращения минутной и часовой стрелок. В источнике дан рисунок, на котором показана такая стрелка.
За целые сутки стрелки часов если и накладываются друг на друга (совпадают), то вдвое больше раз, чем за 12 часов. Удобнее искать количество совпадений трёх стрелок в течение одного оборота часовой стрелки.
Найдём сначала, сколько раз за один час совпадают секундная и минутная стрелки.
Эти стрелки имеют общую шкалу в виде кольца, на которое нанесены 60 рисок, являющихся границами 60 делений. Для минутной стрелки одно деление соответствует одной минуте, для секундной — одной секунде. Первое совпадение минутная и секундная стрелки имеют на нулевой риске. Вот мы запустили часы, и стрелки двинулись в путь.

Сколько раз за один оборот минутной стрелки совпадают минутная и секундная стрелки?
После того, как секундная стрелка совершит первый полный оборот и вернётся на нулевую риску, минутная встанет на первую риску. Секундной стрелке остаётся догнать минутную. Когда она проходит путь от нулевой до первой риски, в это время минутная стрелка, движущаяся в 60 раз медленнее, уходит от первой риски вперёд на 1/60 деления. От момента этого положения стрелок до момента их совпадения проходит небольшое время, в течение которого минутная стрелка сдвигается ещё на маленькую долю деления. Итак, стрелки совпадают где-то в начале второй минуты. Это второе по счёту совпадение.

После того, как секундная стрелка совершит второй полный оборот и вернётся на нулевую риску, минутная минутная встанет на вторую риску. Когда после этого секундая стрелка проходит путь от нулевой до второй риски, минутная уходит от первой риски вперёд на 2/60 деления. На то, чтобы настигнуть (окончательно догнать) минутную стрелку, секундной стрелке потребуется вдвое больше времени, чем в предыдущем случае, а за это время минутная стрелка уйдёт вперёд ещё на две маленькие доли деления, такие, о которых мы упомянули выше.
Итак, третье по счёту совпадение будет на третьей минуте, а точнее — на расстоянии 2/60 долей минуты от второй риски плюс две маленькие доли минуты.
Пятьдесят девятое совпадение стрелок будет в пределах пятьдесят девятой минуты, а точнее — на расстоянии 58/60 долей минуты от 58-й риски плюс 58 маленьких долей минуты. То есть, 59-е совпадение произойдёт в непосредственной близости от 59-й риски. Как можно было заметить, интервалы между совпадениями стрелок несколько больше одной минуты, поэтому следующее после 59-го совпадение может быть только на нулевой риске, а это уже будет начало нового часа. Вы, вероятно, догадались, что одна шестидесятая доля минуты плюс то, что названо здесь маленькой долей минуты, равны одной пятьдесят девятой доле минуты.
Итак, в течение одного часа секундная и минутная стрелки совпадают 59 раз.
Нарисуем на циферблате второе кольцо и нанесём на него 59 равноотстоящих отметок (например, синих: «секунда» и «синий» начинаются с буквы «с»), сответствующих местам совпадения секундной и минутной стрелок.

Сколько раз за один оборот часовой стрелки совпадают часовая и минутная стрелки?
Произведя рассуждения, аналогичные изложенным выше, получим, что они совпадают 11 раз. Нанесём на второе кольцо 11 равноотстоящих чёрных отметок («чёрный» и «час» начинаются с буквы «ч»).
Сколько мы найдём на втором кольце мест совпадений синих и чёрных отметок, столько раз в течение 12 часов все три стрелки часов совпадают.
Задачу можно сформулировать так: некоторое целое число 1/59 долей окружности должно быть равно некоторому целому числу 1/11 долей окружности. Точнее и абстрактнее: число, кратное 1/59, равно числу, кратному 1/11, при этом максимальная величина числа, кратного 1/59, равна 58/59. Имеются ли у этой задачи решения и если да, то сколько их?
Условию задачи соответствует уравнение m/59=n/11, или m/n=59/11, где m и n — целые числа, а m не больше 58. Числа 59 и 11 являются простыми, поэтому дробь 59/11 не может быть сокращена, поэтому m не может быть меньше 58, следовательно, задача не имеет решения.
Ответ: Часовая, минутная и центральная секундная стрелки часов с плавным ходом секундной стрелки в течение суток накладываются друг на друга два раза: в полночь и в полдень.
Перейти в начало страницы
 
+Цитировать сообщение
 
Начать новую тему
Ответов (1 - 8)
Татиана
сообщение 27.4.2019, 20:27
Сообщение #2


Активный участник


Группа: Пользователь
Сообщений: 896
Регистрация: 28.8.2015
Из: Москва
Пользователь №: 2757



Моя внучка, ещё дошкольница, взяла свои детские часы и "решила задачу" просто покрутив стрелки. Мне понравился её подход к решению задачи методом постановки опыта.... biggrin.gif
Перейти в начало страницы
 
+Цитировать сообщение
Николай Петрович
сообщение 28.4.2019, 9:30
Сообщение #3


Я такой же, как все: я не похож ни на кого другого.


Группа: Пользователь
Сообщений: 3026
Регистрация: 7.10.2014
Из: Королёв
Пользователь №: 2324



Каждый решает задачи, как умеет. Ваша внучка решила задачу только относительно двух стрелок. Во-первых, потому, что на детских часах нет секундной стрелки. Во-вторых, если бы она взяла часы с центральной секундной стрелкой... вот и родилась новая задача:
У вас есть исправные часы с центральной секундной стрелкой, с помощью которых вы хотите экспериментальным путём получить ответ на задачу, приведённую здесь в сообщении #1. Сколько времени пройдёт от начала до конца эксперимента?
Решите задачу при допущениях, что вы можете мгновенно и точно устанавливать стрелки часов на желаемое время и что вы обладаете абсолютной способностью отличать совпадение трёх стрелок от несовпадения.
Перейти в начало страницы
 
+Цитировать сообщение
Татиана
сообщение 28.4.2019, 10:40
Сообщение #4


Активный участник


Группа: Пользователь
Сообщений: 896
Регистрация: 28.8.2015
Из: Москва
Пользователь №: 2757



Да конечно ясно, что ребенок "решил" задачу по детски . Пусть хоть так думает, а дальше помогу развивать логику.
Перейти в начало страницы
 
+Цитировать сообщение
Николай Петрович
сообщение 14.5.2019, 17:12
Сообщение #5


Я такой же, как все: я не похож ни на кого другого.


Группа: Пользователь
Сообщений: 3026
Регистрация: 7.10.2014
Из: Королёв
Пользователь №: 2324



Сначала дополнительная задача показалась мне интересной, но как только я начал сочинять решение, я понял, что ошибся.
Как надо начать эксперимент с часами? Сначала надо установить всё стрелки часов на 12 (или, по-нашему, на нулевую отметку шкалы). Но секундная стрелка нам не подвластна: в заведённых часах она всё время движется, а когда завод кончится — остановится в произвольном месте. Надо обладать способностью Ури Геллера, чтобы секундную стрелку остановить в нужном месте.
Одно это отбивает желание решать задачу.
Перейти в начало страницы
 
+Цитировать сообщение
Татиана
сообщение 15.5.2019, 11:17
Сообщение #6


Активный участник


Группа: Пользователь
Сообщений: 896
Регистрация: 28.8.2015
Из: Москва
Пользователь №: 2757



Николай Петрович! А вы представьте, что секундной стрелки нет....
Перейти в начало страницы
 
+Цитировать сообщение
Николай Петрович
сообщение 15.5.2019, 16:05
Сообщение #7


Я такой же, как все: я не похож ни на кого другого.


Группа: Пользователь
Сообщений: 3026
Регистрация: 7.10.2014
Из: Королёв
Пользователь №: 2324



Уже представил и описал в третьей трети сообщения #1. А надо было мне начать с этого. Возможно, тогда моё решение совпало бы с тем, которое приведено в источнике. Оно нравится мне больше моего решения.
Перейти в начало страницы
 
+Цитировать сообщение
Татиана
сообщение 16.5.2019, 12:52
Сообщение #8


Активный участник


Группа: Пользователь
Сообщений: 896
Регистрация: 28.8.2015
Из: Москва
Пользователь №: 2757



Да, и мне тоже.
Перейти в начало страницы
 
+Цитировать сообщение
Николай Петрович
сообщение 16.5.2019, 13:46
Сообщение #9


Я такой же, как все: я не похож ни на кого другого.


Группа: Пользователь
Сообщений: 3026
Регистрация: 7.10.2014
Из: Королёв
Пользователь №: 2324



Пользуясь случаем, ещё раз скажу, зачем я публикую решения задач.
У хорошего учителя должны быть в запасе разные варианты изложения одного и того же материала. Я решаю задачи, не заглядывая в решения, имеющиеся в интернете. Если моё решение получается не хуже того, которое есть в интернете — интернет получает ещё один хороший вариант. Если моё решение хуже — оно показывает, что не боги горшки обжигают. То есть, не каждому дано быть мастером решения задач, но каждый может научиться находить правильный ответ.
Перейти в начало страницы
 
+Цитировать сообщение

Ответить в данную темуНачать новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



RSS Текстовая версия Сейчас: 24.5.2019, 3:47